My research program addresses two grand challenges in science: antimicrobial resistance and quantifying global biogeochemical cycling. In the first, I am interested in how diversity and metabolic changes in biofilms contribute to the alarming and expanding problem of antibiotic resistance. In the second, I study anaerobic metabolisms associated with biogeochemical cycles as a biotechnological and ecological source of innovation. Traditionally these disciplines don’t intersect. I would argue, however, that microbial ecology and evolution mediated by metabolic feedback lie at the core of each. Metabolic byproducts can open up new niches that influence eco-evolutionary dynamics and vice versa. Insights into diversification, resilience, resource competition, and cooperation in one system (environment) can inform another (host). Furthermore, the practical component uniting my research program is the study of ecology and evolution in anaerobic biofilms, particularly those that experience limiting resources (e.g. mucosal surfaces or natural environments). In addition, I am keenly interested in developing novel engineered devices and bioinformatic tools to address key scientific questions.
PhD in Microbiology and Immunology, 2013
Medical University of South Carolina
MS in Microbiology and Immunology, 2008
Medical University of South Carolina
BSc in Environmental Science, 2006
Virginia Tech